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Abstract
We study the number of local minimum states of the multi-charge network
spin glass model with binary spin variables ρ = 0, 1 and external fields. The
energy function is defined by changing the sign of the Hopfield energy function.
This model is motivated by considerations on the shape–complementary-shape
interactions among protein molecules.

PACS numbers: 87.10.+e, 75.50.Lk, 64.60.Cn

1. Introduction

In recent years, studies of infinite range spin glass models [1, 2] have given much inspiration
to studies of biological networks such as neural network models [3]. The energy structures
of these models are complex, which is typically expressed by the enormous number of local
minimum states.

A few years ago, we introduced a spin glass model which is defined by reversing a sign
of the Hopfield energy function [4, 5]. With spin variables ηi (i = 1, 2, . . . , N) and external
field h0, this model has an energy function

H = −1

2

∑
i �=j

Jij ηiηj + h0

∑
i

ηi (1)

where interactions Jij are given by

Jij = − 1

N

∑
µ

ξ
µ

i ξ
µ

j (2)

with Jii = 0. The quenched variables ξ
µ

i (µ = 1, 2, . . . , P ) are assumed to be ±1 with
probability 1/2. Putting (2) into (1), we see that the spin variables interact as if they bear
several charges given by ξ

µ

i . For this reason, we call this type of spin glass model the
multi-charge network (MCN) model.
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In this paper, with biological modelling in mind, we study the number of local minimum
states of (1) for binary spin variables ηi = ρi − r, where ρi = 0, 1 and r is a parameter which
controls the proximity to the Ising spin (r = 1/2) and pure binary spin (r = 0).

There are several reasons which make the MCN model interesting in the studies of
biological systems. First, it reflects the effect of unlearning in random neural network models
[4]. The idea of unlearning was introduced to discuss the function of REM sleep and to improve
the neural network model [6, 7]. When this idea is applied to a random neural network model,
interactions become correlated, which will be qualitatively expressed by (2). Secondly, this
model is expected to simulate the protein molecule networks which are controlled by shape–
complementary-shape interactions among protein molecules [5]. In this case, the MCN model
will provide a simple spin-glass-like model of the immune system.

The function of the immune system has been an attractive subject in biology. The
immune system is made of many different kinds of protein molecules, which respond to
foreign materials and render them harmless. Further, information about foreign materials is
maintained in the system to maintain immunity. More than two decades ago, the network
model of the immune system was suggested to discuss these properties [8]. About a decade
ago, a spin-glass-like model was suggested to discuss the capacity of the memory by assuming
random interactions among protein molecule concentrations [9, 10]. The advantage of the
spin-glass-like model is that we can use various results obtained for spin glass models. In
addition, formulations by infinite range spin interactions make several analytic studies feasible.

Let us describe the statistical mechanics of the Ising MCN model with no external fields.
By using the replica method, we found that there is a dynamical spin glass phase transition
for α ≡ P/N < αc ∼ 1.4, while the phase transition is similar to the Sherrington–Kirkpatrick
model for α > αc [4]. The MCN model for small α has properties very similar to the spin
glass models which were introduced recently by several authors [11–13]. We also studied
the number of local minimum states in the form of exp (Ng) and found that g increases to the
possible maximum value ln 2 as α → 0 [5]. Although there will be some corrections which
disappear in the thermodynamic limit, this result implies that memory effects tend to the
maximum for α → 0. Correspondingly, we found numerically that remanent magnetizations
tend to 1 in this limit. These results imply that the memory effects are much stronger than the
case of random interactions.

In this paper, we extend the studies of local minimum states of the MCN model to binary
spin variables, which are more realistic for biological systems. In section 2, we describe the
model in the context of protein molecule networks. Section 3 is devoted to the derivation
of the mean-field equations for the number of local minimum states. Section 4 is devoted
to studies of the saddle point equations for various parameters. In particular, we address the
properties in the α → 0 limit. Section 5 is devoted to some discussions.

2. Model description

The MCN model is obtained simply by changing the sign of the Hopfield model. Originally,
this model was motivated by the observations on unlearning in the SK model. In this section,
we present another motivation for this model. Although the idea of multi-charge was described
in the previous paper [5], we describe them in terms of protein molecule interactions.

It is known that the interactions among protein molecules are governed by dual shapes
on the surfaces of the molecules. That is, molecules interact attractively via the complemen-
tarity of their shapes. The interactions are weak otherwise. To formulate this, we imagine
formal protein molecules and introduce quenched variables ξ

µ

i to indicate that there is a
shape µ if ξ

µ

i = 1, its complementary shape if ξ
µ

i = −1 on the surface of a kind of protein
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molecule i. In this way, a kind of molecule i (i = 1, 2, . . . , N) is characterized by shapes
ξ

µ

i (µ = 1, 2, . . . , P ). P represents the number of kinds of dual shapes of protein molecules
and N is the number of different kinds of molecules which make the networks.

Now we discuss the effective energy function for protein molecule concentrations ηi,
which will be given by the quadratic function of ηi. In terms of shape µ of molecules i and
molecules j, shape–complementary-shape interactions will give a factor ξ

µ

i ξ
µ

j −(ξµ

i ξ
µ

j

)2
in the

energy function. In this expression, the second term can be dropped since they are cancelled
by terms which control protein concentrations. Further, there are no cross terms between
different shapes since different shapes interact weakly. We can introduce self-interaction terms
for binary spin variables. Such terms will be proportional to the squares of concentrations,
which are expressed by external field terms for binary spin variables. In this way, we reach
the energy function expressed by (1) with (2).

Since ξ
µ

i work like charges, the idea of neutralization naturally arises by writing the
energy function in the form

H = 1

2N

∑
µ

(∑
i

ξ
µ

i ηi

)2

+ h0

∑
i

ηi − 1

2
α
∑

i

{(1 − 2r)ηi + r(1 − r)}. (3)

This form implies that, for h0 = (1 − 2r) α/2, the minimum of the energy function is given
by
∑

i ξ
µ

i ηi = 0 for all µ. This requirement can be viewed as a neutralization of all kinds of
charges. As we will see later, this value of h0 roughly gives the maximum of the number of
local minimum states for a given α. Although the neutralization is not satisfied exactly for
discrete spin variables, this form of the energy function implies that, for P < N, there exists an
(N − P)-dimensional configuration space which gives very low energy, while there is no such
space when P > N. This suggests that there is a large number of local minimum states for α ∼
0, which implies strong remanent properties. For these reasons, we are especially interested
in the model with small α.

Let us give some remarks. Since N is the number of kinds of molecules, ξ
µ

i should be
different vectors for different µ. Thus, if ξ

µ

i are assigned randomly, N should be much smaller
than 2P, which is the maximum number of kinds of protein molecules. This gives the relation
P ln 2 
 ln N or α 
 ln N/(N ln 2). This is the lower bound of α, which is very small for
large N, to simulate the protein molecule networks. In this paper, we assume that α is of order
1 to apply mean-field theory and concentrate on the small α.

These arguments suggest that the number of local minimum increases as the number of
kinds of protein molecules increases when h0 = (1 − 2r) α/2. We will study this point in the
next section.

3. Derivation of the saddle point equations

This section is devoted to the formulation of the mean-field method to study the number of
local minimum states of the binary MCN model. We follow the calculations presented in [14].

When the temperature is zero, the energy function (1) defines a gradient dynamics which
makes the energy lower and leads to the attractors of the dynamics. They are local minimum
states of (1) which are defined by ρi = 0 if the local field is negative and ρi = 1 if the local
field is positive. Thus, they should satisfy the equations

ρi = θ


∑

j

Jij (ρj − r) − h0


 (4)

for all i, where θ (x) = 0 for x < 0 and θ (x) = 1 for x � 0. Note that positive h0 suppresses
ρi = 1. For r = 1/2 and h0 = 0, the equation (4) reduces to the Ising spin model without external
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fields. In this case, ηj = ±1/2 will appear with probability 1/2, implying hi = ∑
j Jij ηj

distribute evenly around 0 when all solutions are scanned. This is a kind of consistency
between the right-hand side and the left-hand side of (4). When 0 � r < 1/2, we expect that,
by adjusting h0, ρi = 0, 1 appear with the same probability.

Equation (4) implies that the local minimum states satisfy

ηi


∑

j

Jij ηj − h0


 > 0 (5)

for all i, where ηi = ρi − r = −r, 1 − r. The number of local minimum states is given by

G =
∑
{η}

∏
i

∫ ∞

0
δ


ηi


∑

j

Jij ηj − h0


− hi


 dhi. (6)

For r = 0, ηi = −r are assumed to be infinitesimally small negative values.
ξ

µ

i averages of G, which are denoted by 〈G〉, are obtained after expressing the delta
functions by integral representations. We describe the calculations in the appendix, where
definitions of the saddle point variables are also given. Then the problem reduces to finding
the extremum of

〈G〉 = Extr{exp(Ng)} (7)

where

g = − 1
2 α ln{(1 + B)2 − AC} + αB − ĀA − B̄B − C̄C + ln z (8)

where

z =
∑

η=−r,1−r

�(w(η)) exp(η2C̄)

with

�(x) =
∫ x

−∞
exp

(− 1
2 t2
) dt√

2π

and

w(η) = η2B̄ − ηh0√
2Āη2

.

Note that, when r = 0, we should first take the limit r → 0 in w(−r).
Using g, we obtain the saddle point equations as follows:

Ā = 1

2

αC

(1 + B)2 − AC

B̄ = α − α
1 + B

(1 + B)2 − AC

C̄ = 1

2

αA

(1 + B)2 − AC

A = − 1

z

1

2Ā

∑
η

w(η)�′(w(η)) exp(η2C̄)

B = 1

z

1√
2Ā

∑
η

|η|�′(w(η)) exp(η2C̄)

C = 1

z

∑
η

η2�(w(η)) exp(η2C̄)

where the η-sum is over −r, 1 − r .
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Figure 1. α-dependence of gm/ln 2 with h0 = 0 and r = 0.0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5 from
the bottom.

Fortunately, analytic studies of the saddle point equations are feasible in the α → 0 limit,
which is the most interesting situation. The details will be discussed in the next section.

4. Solutions of the saddle point equations

By using the saddle point equations presented in section 3, we can obtain the saddle point
values of g, which is denoted by gm, as a function of r, h0 and α. The situation r = 1/2
and h0 = 0, i.e. the Ising spin case was studied in [5]. Here, we first study the case h0 = 0
with various r and then study the pure binary spin case r = 0 with varying h0, which is more
realistic biologically. Fortunately, analytic studies are feasible for α ∼ 0, since w(η) with
suitable parameter values tends to positive infinity in this limit.

Although we first focus on the case h0 = 0, some expressions are not restricted to this
situation as long as two w(η) tend to positive infinity for α → 0.

4.1. Solutions with h0 = 0

Let us first concentrate on the case h0 = 0 with various r. Before discussing the analytic
solutions, we describe the numerical results for h0 = 0. Figure 1 shows the α-dependence of
gm/ln 2 for various r. As expected, gm increases as α → 0. On the other hand, at a given α, gm

monotonically decreases as r decreases from the Ising case r = 1/2. There are two peculiar
aspects in figure 1. First, in the α → 0 limit, the solutions for r �= 0 give the limit gm → ln 2,
while for r = 0, the limiting value of gm is smaller than ln 2. Secondly, there is a crossover
point around α ∼ 0.1 for small r. These results imply that α = 0 is a singular point of gm as a
function of r.

Let us discuss the solutions of the saddle point equations for small α. When h0 = 0, the
equations for A and B in section 3 yield

A = − B̄

2Ā
B. (9)
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On the other hand, numerical studies imply that −A is positive and increases faster than 1/α,
while other variables remain finite or tend to zero as α → 0. Then, the saddle point equations
for Ā, B̄, C̄ reduce to

Ā ∼ − α

2A
B̄ ∼ α C̄ ∼ − α

2C
. (10)

With these relations and the behaviour of −A, we assume that B̄/
√

2Ā → ∞ and �(w(η)) →
1 as α → 0, except for the pure binary case r = 0, which will be discussed later. As we will
see, �(w(η)) − 1 → 0 faster than α. Thus we simply assume that they can be set to 1 to
discuss the first-order terms of α.

With these assumptions, we have the closed equations for C and C̄, which give

C ∼ γ − α

4γ
{r4 + (1 − r)4 − 2γ 2} (11)

to the first order of α, where γ = (r2 + (1 − r)2)/2. Note that this expression holds for h0 �=
0 as long as �(w(η)) ∼ 1. On the other hand, using (9) and (10), we have B ∼ 1, which reads√

α

|A| ∼ 1

2
√

2π

∑
η

|η| exp
(− 1

2 η2α|A|) (12)

where we used z ∼ 2 and C̄ ∼ 0. Since r2 < (1 − r)2, the term with η = −r contributes
mainly on the right–hand side of this equation. Then we asymptotically obtain

r2|A| ∼ 2
α

ln 1
α

(13)

which really increases faster than 1/α. Summarizing these results, we obtain for r �= 0,

gm ∼ ln 2 − 1

2
α ln

{
4 + C

2

r2α
ln

1

α

}
+

1

2
α (14)

where we used z ∼ 2 − α in ln z. This result gives gm/ln 2 → 1 and the factor 1/r 2 implies
that the gradient for α ∼ 0 increases as r → 0 in accordance with figure 1.

For r = 0, the contributing term in (12) changes from η = −r to η = 1 − r. We also notice
that �(w(0)) = 1/2 and �(w(1)) → 1 as α → 0 by assuming w(1) → +∞. Repeating
similar calculations, we have C = C0 ∼ 2/3 − α/6, z ∼ 3/2(1−α/2) and |A| ∼ (2/α) ln(1/α),
yielding

gm ∼ ln
3

2
− 1

2
α ln

{
4 + C0

2

α
ln

1

α

}
+

1

2
α. (15)

This result gives gm/ln 2 → ln(3/2)/ln 2 ∼ 0.585 as α → 0. By these calculations, we see
that the difference of gm is due to the difference of limiting values of w(η).

Let us give some remarks. First, in the above calculations, we used �(w(η)) ∼ 1
repeatedly. This is true to the first order of α, since typically 1 − �(B̄/

√
2Ā) ∼

exp(−α|A|/2)/(
√

2πα|A|) ∼ α/
√

ln(1/α). Secondly, we should note that the asymptotic
behaviour of |A| will be qualitatively correct also for h0 > 0 as long as two w(η) tend to positive
infinity. This condition implies that h0 should be scaled as cα with a suitable constant c.
We discuss this point in the next subsection.

4.2. Two characteristic h0 for h0 > 0

To discuss non-zero h0, it is helpful to identify two characteristic h0 which characterize the
behaviour of gm: one is defined by gm ∼ 0 and the other is defined by the maximum condition
on gm. In the following arguments, we use B̄ ∼ α to give some idea of them, especially their
α-dependence. The picture obtained will be qualitatively correct for moderate α.
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Figure 2. h0-dependence of gm/ln 2 with α = 0.2 and r = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5. The maxima
are approximately located at 0.1(1 − 2r).

The first characteristic h0 is denoted by hb, beyond which gm are practically zero. hb is
determined by �(w(1 − r) = 1/2 or w(1 − r) = 0. For h0 > hb, gm is very small especially
for small α since w(1 − r) → −∞. The condition w(1 − r) = 0 gives

hb = (1 − r)B̄ ∼ (1 − r)α. (16)

Note that hb scales as α in accordance with J 2
ij ∼ α/N .

The second characteristic h0, which is denoted by hm, gives the maximum of gm with other
parameters fixed. This is defined by dgm/dh0 = 0, which reduces to ∂gm/∂h0 = 0 at the saddle
points, where the partial differential means differential with fixed saddle point variables. This
gives

�′(w(−r)) exp(r2C̄) = �′(w(1 − r)) exp((1 − r)2C̄) (17)

which can be solved in terms of hm, giving

hm = (1 − 2r)(B̄2 − 4ĀC̄)

2B̄

∼ (1 − 2r)α

2
(18)

where, for the second line, we used the asymptotic behaviour of the saddle point variables for
α → 0.

For α = 0.2, figure 2 shows gm/ln 2 as functions of h0 for various r. As expected, gm for
the Ising spin case r = 1/2 takes a maximum value at h0 = 0, whereas for 0 � r < 1/2, gm

takes maxima at finite h0 ∼ hm. For r ∼ 0, the tails of gm have break points, beyond which gm

are practically zero. These points are located at h0 slightly smaller than hb.

4.3. Solutions with r = 0 for various h0

In this subsection, we concentrate on the situation r = 0, which is natural biologically since
sites with ηi = 0 do not contribute to the local fields on other sites.

The behaviour of gm with r = 0 was partly discussed in the previous subsections. Figure 1
shows that, with no external field, gm → ln 3/2 instead of ln 2 for α → 0. Figure 2 shows that,
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Figure 3. h0-dependence of gm/ln 2 with r = 0 and α = 0.05, 0.1, 0.15. For α = 0.05 and
0.1, gm/ln 2 shows maxima approximately at α/2 and they vanish beyond h0 ∼ α. Note that for
α = 0.05 and 0.1 gm/ln 2 has other branches which continuously become the values in figure 1 for
h0 → 0.

for α = 0.2, gm with r = 0 increases to a maximum as h0 increases to hm and then decreases
as h0 → hb. In this subsection, we are interested in the h0-dependence of gm for smaller α.

For r = 0, figure 3 shows the h0-dependence of gm for α = 0.05, 0.1, 0.15. The values
at h0 = 0 were already shown in figure 1. gm with α = 0.15 is similar to that with α = 0.2
in figure 2, while gm for α = 0.05, 0.1 has two branches; one tends to the values in figure 1
for h0 → 0 and other decreases drastically for h0 ∼ 0 and ∼hb with the maxima at hm ∼ α/2.
The crossovers between the two branches tend to zero faster than α as α decreases. This is
because h0 should be much smaller than

√
2Ā ∼ α/

√
ln(1/α) to give w(0) ∼ 0. We can say

that finite h0 changes gm drastically for small α even after eliminating a scale factor α.
Figures 1 and 3 imply that, for r = 0, these crossover points are always located in the

region h0 > 0, whereas for small positive r, they appear on the line h0 = 0 as shown in figure 1.
Thus the crossover points for r = 0 should form a line which ends at the point h0 = 0 and
α = 0, while this line crosses the line h0 = 0 at some positive α for small but positive r.

The existence of the crossover points implies that the contributing regions in the
configuration space change discontinuously around these points since the saddle point with
larger gm mainly contributes to 〈G〉. According to the definition in appendix, C is the average
of η2

i over local minimum states, which equals the average of ρi for r = 0. For example, we
found numerically that the crossover point for α = 0.1 is located at h0 ∼ 0.0055 with gm/ln 2 ∼
0.43, and C is 0.623 for the branch connected to h0 = 0 and 0.490 for the branch connected to
the maximum. Note that these values should change continuously to 2/3 and 1/2, respectively,
for α → 0 according to the results in subsection 4.1. Note C = 1/2 implies that ρi = 0, 1
appear with the same probability, while C = 2/3 implies ρi = 0, 1 appear with probability 1/3
and 2/3, respectively. On the other hand, these values change continuously with each other in
the large α region. This property is similar to the gas–liquid phase transition.

We have done some preliminary studies of local minimum states for r = 0 by simulations.
Taking N ∼ 50 and P ∼ 5, local minimum states were generated randomly by gradient
dynamics for various h0. The regions which give the C �= 0 local minimum states are found
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to be limited by h0 � α in agreement with the mean-field results. However, the averages of
C are not in good agreement except for h0 ∼ α/2. We suspect that a random search is too
naive to study biased local minimum states and an exhaustive search will be needed to study
the averages of C especially for h0 ∼ 0 and hb.

4.4. gm on the maximum points h0 = hm

To conclude this section, we study the behaviour of gm along the maximum points h0 = hm as
α → 0. The relation (17) simplifies the saddle point equations greatly, giving

A = −1

z

B̄

2Ā
√

2Ā
�′(w(−r)) exp(r2C̄) (19)

B = 1

z

1√
2Ā

�′(w(−r)) exp(r2C̄) (20)

which yields

A = − B̄

2Ā
B (21)

as in the case h0 = 0. With the asymptotic relations (10), we have B ∼ 1 for α → 0, which
gives

2Ā ∼ 1

8π
exp

{
− (rB̄ + h0)2

2Ā

}
. (22)

Using again Ā ∼ −α/2A, B̄ ∼ α, and setting h0 = hm ∼ (1 − 2r)α/2, we have

|A| ∼ 8πα exp

{
α|A|

4

}
. (23)

By this equation, we obtain |A| ∼ (8/α) ln(1/α) asymptotically. Putting these results in g,
we obtain

gm ∼ ln 2 − 1

2
α ln

{
4 + C

8

α
ln

1

α

}
+

1

2
α. (24)

This result is similar to the Ising spin case without external fields, which is recovered by setting
C = 1/4. Note that for α = 0, C only varies from 1/4 to 1/2. Thus, for binary spin variables,
gm → ln 2 in a similar manner as in the Ising case if h0 is set to hm ∼ (1−2r) α/2.

Let us briefly comment on the situation h0 �= hm but close to hm. Figure 3 implies that gm

also tends to ln 2 even in such a situation. With h0 �= hm, one of the two terms in A and B
mainly contributes for α → 0. Since the contributing term in A and B is determined by the
common factor �′(w(η)) , we can write an equation similar to (21) if h0 is scaled as α. This
will allow us to make calculations similar to the ones presented above. In particular, both the
terms in z will tend to 1, giving gm ∼ ln 2 for α → 0.

5. Discussion

As discussed in sections 1 and 2, the Hopfield model with opposite interactional sign can be
viewed as a network made of many different kinds of molecules, which are characterized by
P kinds of charges. We call this model the multi-charge network model.

In this paper, to evaluate the memory effect of the MCN model, we have studied the
number of local minimum states in the form of exp (Ngm) with binary spin variables ρi = 0, 1
and external fields h0. We have introduced spin variables ηi = ρi − r, which correspond
to the Ising spins for r = 1/2 and pure binary variables for r = 0. When h0 = 0 and
0 < r � 1/2, gm → ln 2 for α → 0, while when h0 = 0 and r = 0, gm → ln(3/2) for α → 0 as is
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shown in figure 1. However, finite h0 changes the situation drastically. In particular, on the line
h0 = hm ∼ (1 − 2r) α/2, gm behaves similarly to the Ising spin case. This property will hold for
0 < h0 < hb ∼ (1 − r) α and h0 not close to both ends. We should note that gm = ln 2 does not
mean that all configurations become local minimum states. There should be some corrections
for gm which disappear in the thermodynamic limit.

Let us give some remarks on the local minimum energies. Although the following
argument will be possible for r > 0, we concentrate on the case r = 0 for the sake of simplicity.
For r = 0, we first notice that the energy function (3) implies H = 0 for ηi = 0. For the
non-trivial configuration, which is

∑
i ηi > 0, we expect that aµ = ∑

i ξ
µ

i ηi/
√

N can be very
small for small α. This implies that the absolute minimum energy is approximately given by
the linear terms of ηi. Thus, the energies of the non-trivial local minimum states are higher
than zero for h0 > α/2, while some of them will become negative for h0 < α/2. Accordingly,
the absolute minimum state is given by ηi = 0 from large h0 down to h0 ∼ α/2, below which it
is given by non-trivial ηi. These observations suggest that the properties in finite temperature
can be quite different between the two sides of h0 = α/2, which is not seen in the behaviour
of gm.

The neutralization effect will be closely related to the ability of recognition. This point
will be clearly seen by studying the responses to external systems. Let us imagine that the
system consists of two parts; a system A made of N spins and an external system B made of
M spins, where spins in system B are assumed to be fixed and external fields are imposed on
system A. Here h0 is set to (1 − 2r) α/2 for simplicity. For the whole system, we have the
energy function given by

HX = 1

2N

∑
µ

(∑
i∈A

ξ
µ

i ηi + Xµ

)2

= H +
∑
i∈A

hBiηi +
1

2N

∑
µ

(Xµ)2

where H is the energy function of system A and hBi ≡ ∑
µ Xµξ

µ

i /N . We should note that
these external fields cannot be replaced by some random external fields since hBi, hBj and Jij

are correlated just like the correlations among Jij . The first line of HX explicitly shows that
system A will recognize charges Xµ by minimizing HX since low-energy states will be given
by
∑

i∈A ξ
µ

i ηi ∼ −Xµ for all µ, implying the neutralization of the whole system. In this
way, system A recognizes system B by adjusting ηi. This set of equations is similar to the
perceptron problem [15] if ηi are identified with synaptic couplings. Note that, unlike the
perceptron problem, the energy function of the MCN model has a simple physical meaning of
networks. This set of equations can also be regarded as a replication of charges −Xµ by the
charges of system A. In short, the MCN model perceives external systems by the replication
of complementary shapes. In these arguments, we have assumed that HX/N can be very close
to zero by some gradient dynamics, which remains to be studied.

In our arguments, a set of quenched variables ξ
µ

i plays a very important role. We may ask
if ξ

µ

i really reflects the properties of protein molecules in reality. To answer this question, we
need to start from the statistical sum of molecules which have complicated shapes. This will
clarify the meaning of ξ

µ

i as well as h0, if they really have physical origins. In this respect,
we should note that the interactions among protein molecules should be characterized by ‘site
randomness’ instead of ‘bond randomness’. In other words, interactions should be expressed
by quenched variables defined for each kind of molecule. The MCN model may be one of the
simple realizations of this idea.



Local minimum states of the binary multi-charge network model 11251

Appendix

This appendix is devoted to the description of the derivation of (7) from (6). Introducing
integral representations for the delta functions, (6) is expressed as

G =
∑
{η}

∏
i

∫ ∞

0

∫ i∞

−i∞
exp φi

(
η′

i

(∑
i

Jij ηj − h0

)
− hi

)
dφi dhi

2π i
. (A.1)

In this expression, η′
i are variables which are positive for ρi = 1 and negative for ρi = 0. We

set η′
i = ηi for simplicity. In the exponential, summation over i and j gives

∑
i

φi


ηi

∑
j

Jij ηj


 = −

∑
µ

aµbµ + α
∑

i

φiη
2
i (A.2)

where aµ = ∑
i ξ

µ

i ηi/
√

N and bµ = ∑
i ξ

µ

i φiηi/
√

N . For each µ, we introduce Gaussian
variables xµ and yµ and write

exp(−ab) =
∫ ∫

exp

{
−1

2
(x2 + y2) + x

a − b√
2

+ iy
a + b√

2

}
dx dy

2π

where index µ is dropped for simplicity. Introducing t = (x + iy)/
√

2 and t̄ = (x − iy)/
√

2,

and after ξ
µ

i averages, we obtain

〈exp(−ab)〉 =
∫

exp

{
−t t̄ +

1

2
(At2 − 2Btt̄ + Ct̄2)

}
dx dy

2π

where A = ∑
i φ2

i η2
i /N, B = ∑

i φiη
2
i /N and C = ∑

i η2
i /N . After integrating over xµ and

yµ, we obtain

〈G〉 =
∑
{η}

∫ ∞

0

∫ i∞

−i∞
exp

(
−1

2
P ln{(1 + B)2 − AC} + PB − h0

∑
i

φiηi −
∑

i

φihi

)

×
∏

i

dφidhi

2π i
.

Then, by expressing 1 by the delta function∫
δ

(∑
i

φ2
i η2

i − NA

)
N dA =

∫ ∫
exp Ā

(∑
i

φ2
i η2

i − NA

)
N dA d Ā

2π i

and writing similar equations for B, B̄ and C, C̄, we obtain a one site problem for φi and ηi.
Replacing φi by iφi and summing over ηi = −r, 1 − r, we obtain

g = − 1
2 αln{(1 + B)2 − AC} + αB − ĀA − B̄B − C̄C + ln z (A.3)

where

z =
∑

η=−r,1−r

�(w(η)) exp(η2C̄)

with

�(x) =
∫ x

−∞
exp

(− 1
2 t2) dt√

2π

and

w(η) = η2B̄ − ηh0√
2Āη2

where irrelevant constants are dropped in (A.3). This completes the derivation of the mean-
field approximation for 〈G〉.
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